Dr. Manoj Kumar, M.Sc, M.Phil, Ph.D Deptt. of Mathematics, MMC, Patna, Email Id: <u>kumarmanojyadav9@gmail.com</u> Contact No: 9572487276 Program for B.Sc (Hons) Part-3

Topic :- Elementary Properties of Automorphism :-

Property 1 :- If $T \in Aut(G)$, then

i.
$$T(e) = e$$

- ii. O(T(a)) = o(a), where $a \in G$ is of order o(a) > o.
- **Proof :-** (i) As we know that if f: G \rightarrow H is a homomorphism, then f (e)= e⁻; e⁻ \in H.

Here T : G \rightarrow G is homomorphism, so T (e)= e , since e⁻ = e in G.

(ii) Let o(a) = n so that n is the least positive integer such that

$$a^n = e ----> (1)$$

Now

 $a^{n} = e \qquad \Rightarrow T (a^{n}) = T (e)$ $\Rightarrow T (a.a.a....n times) = T (e)$ $\Rightarrow T (a) T (a) T (a)....n times) = T (e),$

Since T is a homomorphism

 $\Rightarrow \{T(a)\}^n = e \quad \dots > \quad (2)$

Now, we prove that η is the least positive inlayer such that a satisfying equation (2).

If possible, let $\{T(a)\}^m = e$ for some positive integer a m, o<m<n.

Then
$$T(a) T(a) - m$$
 times =e
 $\Rightarrow T(a. a. a. a.m$ times $) = e$, since T is homomorphism.
 $\Rightarrow T(a^m) = e = T(e)$; from (1)
 $\Rightarrow a^m = e$, $o < m < n$, since T is one- one. This makes a
contradiction for (1).

Therefore o(T(a)) = n = o(a).

Property 2: Prove that a group G is Abelign if and only if $a \rightarrow a^{-1}$ is an automorphism.

Solution :- Suppose f: $G \rightarrow G$ be such that f (x)=x⁻¹ for all x \in G.

Suppose that G is abelian.

Now, we prove that f is an automorphism.

The function f is one - one since

$$f(x) = f(y) \Rightarrow x^{-1} = y^{-1} \Rightarrow (x^{-1})^{-1} = (y^{-1})^{-1} \Rightarrow x = y.$$

Also, if $x \in G$ (second group), then $x^{-1} \in G$ and

we have $f(x^{-1})^{-1} = (x^{-1})^{-1} = x$.

Therefore f is onto.

Thus f is one- one and onto.

Now , suppose G is abelian. Consider $a, b \in G$.

Then f (ab) = (ab)⁻¹; by definition of f. = $b^{-1}a^{-1} = a^{-1}b^{-1}$; G is abelion

= f(a)f(b)

:: f is an automorphism of G.

Conversely, suppose that f is an automorphism of G. we shall prove that G is ablian.

We have
$$f(ab) = (ab)^{-1}$$
; by the definction of f .
 $= b^{-1} a^{-1}$
 $= f(b) f(a)$; by definition of f .
 $= f(ba)$;
: f is an automorphism

· j is an automorphis

Since f is one-one , therefore.

 $f(ab) = f(ba) \Rightarrow ab = ba \Rightarrow G$ is abelian.

Property 3. Let G be a finite abelian group of order *n*. Now, the mapping $\sigma : x \to x^m \nvDash x \in G$.

(i) Let
$$x, y \in G$$
.

Then $\sigma (xy) = (xy)^m = x^m y^m$, since G is abelian = $\sigma(x) \sigma(y)$

 $\therefore \sigma$ is homomorphism.

(ii) σ is onto:

Since (m,n) = 1, there exist integers r and s such that mr + ns = 1. Let $x \in G$. then $x = x^1 = x^{mr+ns} = x^{mr}$. $x^{ns} (x^r)^m (x^n)^s$, Where $x^n = e$ $\therefore x = x^{mr} \not\vdash x \in G$ -------(1) $\Rightarrow x = (x^r)^m \not\vdash x \in G$ $\Rightarrow x = (y)^m$, where $y = x^r \in G$ $\therefore x = \sigma (y)$, $y \in G$. Hence σ is onto.

(iii) σ is one – one : To prove σ is one – one, we prove that ker (σ) = {e}

Let $g \in ker(\sigma)$ be arbitrary. Then $\sigma(g) = e$.

 $\Rightarrow \sigma^{m} = e \Rightarrow g^{mr} = e^{r} = e \Rightarrow g = e, \text{ by } (1)$ $\Rightarrow \text{ker } (g) = \{e\} = \sigma \text{ is one-one }.$ Hence σ is an automorphism of G.

Property 4: If a be any fixed element of a group G then the mapping $T_a:G\rightarrow G$ defined by

 $T_a(x) = axa^{-1} \nvDash x \in G$ is an automorphism of G.

Proof :- The given mapping is

 T_a : G→G defined by $T_a(x) = axa^{-1} \nvDash x \in G$. Now, we prove T_a is an automorphism. For this, we prove the followings:-

(iii) $\mathbf{T}_{\mathbf{a}}$ is onto : Let $g \in G$ be arbitrary. Then $g = a(a^{-1}ga) a^{-1}$; Since $aa^{-1} = e$ $= ag_{1}a^{-1}$, where $g_{1} = a^{-1} ga \in G$ $\Rightarrow g = T_{\mathbf{a}}$ (g₁) where $g_{1} \in G$ $\therefore T_{\mathbf{a}}$ is onto.

Therefore T_a is an automorphism of G.