Problems on complex Variable function

(B.A/B.Sc, Part-III, Hons.)

Dr. Binay Kumar Department of Mathematics Magadh Mahila College, Patna **Example 4.** Determine whether $\frac{1}{2}$ is analytic or not?

Solution. Let
$$w = f(z) = u + iv = \frac{1}{z}$$
 \Rightarrow $u + iv = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2}$

Equating real and imaginary parts, we get

$$u = \frac{x}{x^2 + y^2}, \qquad v = \frac{-y}{x^2 + y^2}$$

$$\frac{\partial u}{\partial x} = \frac{(x^2 + y^2) \cdot 1 - x \cdot 2x}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}, \qquad \frac{\partial u}{\partial y} = \frac{-2xy}{(x^2 + y^2)^2}$$

$$\frac{\partial v}{\partial x} = \frac{2xy}{(x^2 + y^2)^2}, \qquad \frac{\partial v}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Thus,

Thus C – R equations are satisfied. Also partial derivatives are continuous except at (0, 0).

Therefore $\frac{1}{z}$ is analytic everywhere except at z = 0.

Also

$$\frac{dw}{dz} = -\frac{1}{z^2}$$

This again shows that $\frac{dw}{dz}$ exists everywhere except at z = 0. Hence $\frac{1}{z}$ is analytic

Example 5. Show that the function e^x (cos $y + i \sin y$) is an analytic function, find its

Solution. Let $e^x(\cos y + i\sin y) = u + iv$

So,
$$e^x \cos y = u$$
 and $e^x \sin y = v$ then $\frac{\partial u}{\partial x} = e^x \cos y$, $\frac{\partial v}{\partial y} = e^x \cos y$
 $\frac{\partial u}{\partial y} = -e^x \sin y$, $\frac{\partial v}{\partial x} = e^x \sin y$
 $\frac{\partial u}{\partial y} = 0$ $\frac{\partial v}{\partial y} = 0$ $\frac{\partial v}{\partial x} = 0$

Here we see that
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

These are C - R equations and are satisfied and the partial derivatives are continuous.

Hence, $e^x(\cos y + i \sin y)$ is analytic.

$$f(z) = u + iv = e^{x} (\cos y + i \sin y) \text{ and } \frac{\partial u}{\partial x} = e^{x} \cos y, \quad \frac{\partial v}{\partial x} = e^{x} \sin y$$
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = e^{x} \cos y + ie^{x} \sin y = e^{x} (\cos y + i \sin y) = e^{x} \cdot e^{iy} = e^{x + iy} = e^{z}.$$

Which is the required derivative.

Ans.

Example 6. Test the analyticity of the function $w = \sin z$ and hence derive that:

$$\frac{d}{dz}(\sin z) = \cos z$$

Solution. $w = \sin z = \sin(x + iy) = \sin x \cos iy + \cos x \sin iy$

$$= \sin x \cosh y + i \cos x \sinh y$$

$$u = \sin x \cosh y$$
, $v = \cos x \sinh y \cos iy = \cosh y$

$$= \sin x \cosh y + i \cos x \sinh y$$

$$u = \sin x \cosh y, \quad v = \cos x \sinh y \left[\cos iy = \cosh y\right]$$

$$\frac{\partial u}{\partial x} = \cos x \cosh y, \quad \frac{\partial u}{\partial y} = \sin x \sinh y \left[\sin iy = i \sinh y\right]$$

$$\cos h x = \frac{e^x + e^{-x}}{2}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\frac{\partial v}{\partial x} = -\sin x \sinh y, \quad \frac{\partial v}{\partial y} = \cos x \cosh y$$

Thus
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

So C - R equations are satisfied and partial derivatives are continuous.

Hence, $\sin z$ is an analytic function.

$$\frac{d}{dz}(\sin z) = \frac{d}{dz}[\sin x \cosh y + i \cos x \sinh y]$$

$$= \frac{\partial}{\partial x}(\sin x \cosh y + i \cos x \sinh y)$$

$$= \cos x \cosh y - i \sin x \sinh y = \cos x \cos iy - \sin x \sin iy$$
From (2) $\sinh ix$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 ... (1)

$$\sinh x = \frac{e^x - e^{-x}}{2} \qquad ... (2)$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 ... (3)

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} \qquad \dots (4)$$

From (1)
$$\cosh ix = \frac{e^{ix} + e^{-ix}}{2} = \cos x$$

From (3)
$$\cos ix = \frac{e^{i(ix)} + e^{-i(ix)}}{2}$$

= $\frac{e^x + e^{-x}}{2} = \cosh x$

From (4)
$$\sin i x = \frac{e^{i(ix)} - e^{-i(ix)}}{2i}$$

$$= i \frac{e^x - e^{-x}}{2} = i \sinh x$$

From (2)
$$\sinh ix = \frac{e^{ix} - e^{-ix}}{2} = i \sin x$$

$$=\cos(x+iy)=\cos z$$

Example 7. Show that the real and imaginary parts of the function $w = \log z$ satisfy the Cauchy-Riemann equations when z is not zero. Find its derivative.

Solution. To separate the real and imaginary parts of $\log z$, we put $x = r \cos \theta$; $y = r \sin \theta$ $w = \log z = \log(x + iy)$

$$\Rightarrow u+iv = \log(r\cos\theta + ir\sin\theta) = \log r(\cos\theta + i\sin\theta) = \log_e r.e^{i\theta}$$

$$= \log_e r + \log_e e^{i\theta} = \log r + i\theta = \log\sqrt{x^2 + y^2} + i\tan^{-1}\frac{y}{x}$$

$$\theta = \tan^{-1}\frac{y}{x}$$

So
$$u = \log \sqrt{x^2 + y^2} = \frac{1}{2} \log(x^2 + y^2), \ v = \tan^{-1} \frac{y}{x}$$

On differentiating u, v, we get

$$\frac{\partial u}{\partial x} = \frac{1}{2} \frac{1}{x^2 + y^2} \cdot (2x) = \frac{x}{x^2 + y^2} \quad \dots (1)$$

$$\frac{\partial v}{\partial y} = \frac{1}{1 + \frac{y^2}{x^2}} \left(\frac{1}{x}\right) = \frac{x}{x^2 + y^2} \qquad \dots (2)$$

From (1) and (2),
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 ... (A)

Again differentiating u, v, we have

$$\frac{\partial u}{\partial y} = \frac{1}{2} \frac{1}{x^2 + y^2} (2y) = \frac{y}{x^2 + y^2} \qquad \dots (3)$$

$$\frac{\partial v}{\partial x} = \frac{1}{1 + \frac{y^2}{x^2}} \left(-\frac{y}{x^2} \right) = -\frac{y}{x^2 + y^2}$$
 ... (4)

From (3) and (4), we have

$$\frac{\partial u}{\partial v} = -\frac{\partial v}{\partial x} \qquad \dots (B)$$

Equations (A) and (B) are C - R equations and partial derivatives are continuous. Hence, $w = \log z$ is an analytic function except

when

$$x^2 + y^2 = 0 \implies x = y = 0 \implies x + iy = 0 \implies z = 0$$

Now

$$w = u + iv$$

$$\frac{dw}{dz} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2} = \frac{x - iy}{x^2 + y^2}$$
$$= \frac{x - iy}{(x + iy)(x - iy)} = \frac{1}{x + iy} = \frac{1}{z}$$

Which is the required derivative.

Ans.

Example 8. Find the values of C_1 and C_2 such that the function

$$f(z) = x^2 + C_1 y^2 - 2xy + i(C_2x^2 - y^2 + 2xy)$$
 is analytic. Also find $f'(z)$.

Solution. Let

$$f(z) = u + iv = x^2 + C_1 y^2 - 2xy + i(C_2 x^2 - y^2 + 2xy)$$

Equating real and imaginary parts, we get

$$u = x^2 + C_1 y^2 - 2xy$$
 and $v = C_2 x^2 - y^2 + 2xy$
 $\frac{\partial u}{\partial x} = 2x - 2y$ and $\frac{\partial v}{\partial x} = 2C_2 x + 2y$
 $\frac{\partial u}{\partial y} = 2C_1 y - 2x$ and $\frac{\partial v}{\partial y} = -2y + 2x$

C - R equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\Rightarrow 2x - 2y = -2y + 2x \qquad ...(1)$$

$$2C_1y - 2x = -2C_2x - 2y \qquad ...(2)$$

From (2) equating the coefficient of x and y.

$$2C_1 = -2 \Rightarrow C_1 = -1$$

$$-2 = -2C_2 \Rightarrow C_2 = 1$$

$$C_1 = -1 \text{ and } C_2 = 1$$

Hence,

Ans.

On putting the value of C_2 , we get

$$\frac{\partial u}{\partial x} = 2x - 2y, \qquad \frac{\partial v}{\partial x} = 2x + 2y$$

$$f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = (2x - 2y) + i(2x + 2y) = 2[(x + ix) + (-y + iy)]$$

$$= 2[(1+i)x + i(1+i)y] = 2(1+i)(x+iy) = 2(1+i)z$$

This is the required derivative.

Ans.

Example 9. Discuss the analyticity of the function $f(z) = z\overline{z}$.

Solution.
$$f(z) = z\overline{z} = (x+iy)(x-iy) = x^2 - i^2y^2 = x^2 + y^2$$

$$f(z) = x^{2} + y^{2} = u + iv.$$

 $u = x^{2} + y^{2}, v = 0$

At origin,
$$\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{u(0+h, 0) - u(0, 0)}{h} = \lim_{h \to 0} \frac{h^2}{h} = 0$$

$$\frac{\partial u}{\partial y} = \lim_{k \to 0} \frac{u(0, 0+k) - u(0, 0)}{k} = \lim_{k \to 0} \frac{k^2}{k} = 0$$
Also,
$$\frac{\partial v}{\partial x} = \lim_{h \to 0} \frac{v(0+h, 0) - v(0, 0)}{h} = 0$$

$$\frac{\partial v}{\partial y} = \lim_{k \to 0} \frac{v(0, 0+k) - v(0, 0)}{k} = 0$$
Thus,
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Hence, C - R equations are satisfied at the origin.

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \frac{(x^2 + y^2) - 0}{x + iy}$$

Let $z \to 0$ along the line y = mx

$$f'(0) = \lim_{x \to 0} \frac{(x^2 + m^2 x^2)}{(x + imx)} = \lim_{x \to 0} \frac{(1 + m^2)x}{1 + im} = 0$$

Therefore, f'(0) is unique. Hence the function f(z) is analytic at z=0. Ans.

Example 10. Show that the function f(z) = u + iv, where

$$f(z) = \frac{x^3 (1+i) - y^3 (1-i)}{x^2 + y^2}, \quad z \neq 0$$

= 0, z = 0satisfies the Cauchy-Riemann equations at z = 0. Is the function analytic at z = 0? Justify your answer.

Solution.

$$f(z) = \frac{x^3 (1+i) - y^3 (1-i)}{x^2 + y^2} = u + iv$$

$$u = \frac{x^3 - y^3}{x^2 + y^2}, \qquad v = \frac{x^3 + y^3}{x^2 + y^2}$$

 $u = \frac{x^3 - y^3}{x^2 + y^2}, \qquad v = \frac{x^3 + y^3}{x^2 + y^2}$ [By differentiation the value of $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ at (0, 0) we get $\frac{0}{0}$, so we apply first principle method] At the origin

$$\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{u(0+h, 0) - u(0, 0)}{h} = \lim_{h \to 0} \frac{\frac{h^3}{h^2}}{h} = 1$$
 (Along x- axis)

$$\frac{\partial u}{\partial y} = \lim_{k \to 0} \frac{u(0, 0+k) - u(0, 0)}{k} = \lim_{k \to 0} \frac{\frac{1}{k^2}}{\frac{k}{k}} = -1$$
 (Along y- axis)

$$\frac{\partial v}{\partial x} = \lim_{h \to 0} \frac{v(0+h, 0) - v(0, 0)}{h} = \lim_{h \to 0} \frac{\frac{h^2}{h^2}}{h} = 1$$
 (Along x- axis)

$$\frac{\partial v}{\partial y} = \lim_{k \to 0} \frac{v(0, 0+k) - v(0, 0)}{k} = \lim_{k \to 0} \frac{\frac{k^2}{k^2}}{k} = 1$$
 (Along y-axis)

Thus we see that

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \text{and} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
Hence, Cauchy-Riemann equations are satisfied at $z = 0$.

Again

$$f'(0) = \lim_{z \to 0} \frac{f(0+z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 - y^3 + i(x^3 + y^3)}{x^2 + y^2} - (0)}{\frac{x^2 + y^2}{x + iy}} \right]$$
$$= \lim_{z \to 0} \left[\frac{x^3 - y^3 + i(x^3 + y^3)}{x^2 + y^2} \cdot \frac{1}{x + iy} \right]$$

Now let $z \to 0$ along y = x, then

$$f'(0) = \lim_{x \to 0} \frac{x^3 - x^3 + i(x^3 + x^3)}{x^2 + x^2} \left(\frac{1}{x + ix}\right)$$
$$= \frac{2i}{2(1+i)} = \frac{i}{1+i} = \frac{i(1-i)}{(1+i)(1-i)} = \frac{i+1}{1+1} = \frac{1}{2}(1+i) \qquad \dots (1)$$

Again let $z \to 0$ along y = 0, the

$$f'(0) = \lim_{x \to 0} \frac{x^3 + ix^3}{x^2} \cdot \frac{1}{x} = (1+i)$$
 [Increment = z] ... (2)

From (1) and (2), we see that f'(0) is not unique. Hence the function f(z) is not analytic at Ans.

Example 11. Show that the function defined by $f(z) = \sqrt{|xy|}$

Satisfies Cauchy-Riemann equation at the origin but is not analytic at that point.

Solution. Let
$$f(z) = u + iv = \sqrt{|xy|}$$

Equating real and imaginary parts, we get $u = \sqrt{|xy|}$, v = 0At origin

$$\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{u(0+h, 0) - u(0, 0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

$$\frac{\partial u}{\partial y} = \lim_{k \to 0} \frac{u(0, 0+k) - u(0, 0)}{k} = \lim_{k \to 0} \frac{0 - 0}{k} = 0$$

Also

$$\frac{\partial v}{\partial x} = \lim_{h \to 0} \frac{v(0+h, 0) - v(0, 0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0$$
$$\frac{\partial v}{\partial y} = \lim_{k \to 0} \frac{v(0, 0+k) - v(0, 0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = 0$$

From the above results, it is clear tha

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Hence, C-R equations are satisfied at the origin

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \frac{\sqrt{|xy|} - 0}{x + iy}$$

Let $z \to 0$ along the line y = mx, then

$$f'(0) = \lim_{x \to 0} \frac{\sqrt{|mx^2|} - 0}{x(1+im)} = \lim_{x \to 0} \frac{\sqrt{|m|}}{1+im}$$

Thus, the limit on R.H.S. depends upon m and hence will have different values for different values of m.

Therefore, f'(0) is not unique.

Hence the function f(z) is not analytic at z = 0.

Ans.

Example 12. Show that the function

$$f(z) = e^{-z^{-4}}$$
, $(z \neq 0)$ and $f(0) = 0$

is not analytic at z = 0,

although, Cauchy-Riemann equations are satisfied at the point. How would you explain this.

Solution.
$$f(z) = u + iv = e^{-z^{-4}} = e^{-(x+iy)^{-4}} = e^{-\frac{1}{(x+iy)^4}}$$

$$\Rightarrow \qquad u + iv = e^{-\frac{(x-iy)^4}{(x^2+y^2)^4}} = e^{-\frac{1}{(x^2+y^2)^4}[(x^4+y^4-6x^2y^2)-i4xy(x^2-y^2)]}$$

$$\Rightarrow \qquad u + iv = e^{-\frac{x^4+y^4-6x^2y^2}{(x^2+y^2)^4}} e^{-\frac{i4xy(x^2-y^2)}{(x^2+y^2)^4}}$$

$$\Rightarrow \qquad u + iv = e^{-\frac{x^4+y^4-6x^2y^2}{(x^2+y^2)^4}} \left[\cos \frac{4xy(x^2-y^2)}{(x^2+y^2)^4} - i \sin \frac{4xy(x^2-y^2)}{(x^2+y^2)^4} \right]$$

Equating real and imaginary parts, we get

$$u = e^{-\frac{x^4 + y^4 - 6x^2y^2}{(x^2 + y^2)^4} \cos \frac{4xy(x^2 - y^2)}{(x^2 + y^2)^4}}, \quad v = e^{-\frac{x^4 + y^4 - 6x^2y^2}{(x^2 + y^2)^4} \sin \frac{4xy(x^2 - y^2)}{(x^2 + y^2)^4}}$$
At $z = 0$

$$\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{u(0 + h, 0) - u(0, 0)}{h} = \lim_{h \to 0} \frac{e^{-h^{-4}}}{h} = \lim_{h \to 0} \frac{1}{he^{h^4}}$$

$$= \lim_{h \to 0} \left[\frac{1}{he^{h^4}} + \frac{1}{2!h^8} + \frac{1}{3!h^{12}} + \dots \right], \quad \left(e^x = 1 + x + \frac{x^2}{2!} + \dots \right)$$

$$= \lim_{h \to 0} \left[\frac{1}{he^{h^4}} + \frac{1}{2!h^8} + \frac{1}{3!h^{12}} + \dots \right] = \frac{1}{0 + \infty} = \frac{1}{\infty} = 0$$

$$\frac{\partial u}{\partial y} = \lim_{k \to 0} \frac{u(0, 0 + k) - u(0, 0)}{k} = \lim_{k \to 0} \frac{e^{-k^{-4}}}{k} = \lim_{k \to 0} \frac{1}{he^{h^4}} = 0$$

$$\frac{\partial v}{\partial x} = \lim_{h \to 0} \frac{v(0 + h, 0) - v(0, 0)}{h} = \lim_{h \to 0} \frac{e^{-h^{-4}}}{h} = \lim_{h \to 0} \frac{1}{he^{h^4}} = 0$$

$$\frac{\partial v}{\partial y} = \lim_{k \to 0} \frac{v(0, 0+k) - v(0, 0)}{k} = \lim_{k \to 0} \frac{e^{-k^{-4}}}{k} = \lim_{k \to 0} \frac{1}{k \cdot e^{\frac{1}{k^{4}}}} = 0$$

Hence

 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (C – R equations are satisfied at z = 0)

But

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \frac{e^{-z^{-4}}}{z}$$

Along
$$z = re^{i\frac{\pi}{4}}$$

Along
$$z = re^{i\frac{\pi}{4}}$$

$$f'(0) = \lim_{r \to 0} \frac{e^{-r^{-4}} \cdot e^{-\left(e^{i\frac{\pi}{4}}\right)^{-4}}}{e^{i\frac{\pi}{4}}} = \lim_{r \to 0} \frac{e^{-r^{-4}} \cdot e^{-\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{-4}}}{e^{i\frac{\pi}{4}}}$$

$$= \lim_{r \to 0} \frac{e^{-r^{-4}} e^{-\cos \pi}}{\frac{i\pi}{4}} = \lim_{r \to 0} \frac{e^{-r^{-4}} \cdot e}{\frac{i\pi}{4}} = \infty$$

Showing that f'(z) does not exist at z = 0. Hence f(z) is not analytic at z = 0.

Example 13. Examine the nature of the function

$$f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}}; z \neq 0$$

$$f(0) = 0$$

in the region including the origin.

Solution. Here

$$f(z) = u + iv = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}}; z \neq 0$$

Equating real and imaginary parts, we get

$$u = \frac{x^{3}y^{5}}{x^{4} + y^{10}}, \quad v = \frac{x^{2}y^{6}}{x^{4} + y^{10}}$$

$$\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{u(0 + h, 0) - u(0, 0)}{h} = \lim_{h \to 0} \frac{\frac{0}{h^{4}}}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\frac{\partial u}{\partial y} = \lim_{k \to 0} \frac{u(0, 0 + k) - u(0, 0)}{k} = \lim_{k \to 0} \frac{\frac{0}{k^{10}}}{k} = \lim_{k \to 0} \frac{0}{k} = 0$$

$$\frac{\partial v}{\partial x} = \lim_{h \to 0} \frac{v(0 + h, 0) - v(0, 0)}{h} = \lim_{h \to 0} \frac{\frac{0}{h^{4}}}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\frac{\partial v}{\partial y} = \lim_{k \to 0} \frac{v(0, 0 + k) - v(0, 0)}{k} = \lim_{k \to 0} \frac{\frac{0}{h^{10}}}{k} = \lim_{k \to 0} \frac{0}{k} = 0$$

From the above results, it is clear that

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Hence, C-R equations are satisfied at the origin.

$$f'(0) = \lim_{z \to 0} \frac{f(0+z) - f(0)}{z} = \lim_{\substack{x \to 0 \\ y \to 0}} \left[\frac{x^2 y^5 (x+iy)}{x^4 + y^{10}} - 0 \right] \cdot \frac{1}{x+iy} \quad \text{(Increment = z)}$$

$$= \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^5}{x^4 + y^{10}}$$

Let $z \to 0$ along the radius vector y = mx, then

$$f'(0) = \lim_{x \to 0} \frac{m^5 x^7}{x^4 + m^{10} x^{10}} = \lim_{x \to 0} \frac{m^5 x^3}{1 + m^{10} x^6} = \frac{0}{1} = 0 \qquad \dots (1)$$

Again let $z \to 0$ along the curve $y^5 = x^2$

$$f'(0) = \lim_{x \to 0} \frac{x^4}{x^4 + x^4} = \frac{1}{2} \qquad \dots (2)$$

(1) and (2) shows that f'(0) does not exist. Hence, f(z) is not analytic at origin although Cauchy-Riemann equations are satisfied there.

10 C-R EQUATIONS IN POLAR FORM

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{0}} = -\mathbf{r} \frac{\partial \mathbf{v}}{\partial \mathbf{r}}$$

Proof. We know $x = r \cos \theta$, and u is a function of x and y.

$$z = x + iy = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

$$u+iv=f(z)=f(re^{i\theta}) \qquad ... (1)$$

Differentiating (1) partially w.r.t., "r", we get

$$\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} = f'(re^{i\theta}) \cdot e^{i\theta} \qquad \dots (2)$$

Differentiating (1) w.r.t. " θ ", we get

$$\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} = f'(re^{i\theta}) r e^{i\theta} i \qquad \dots (3)$$

Substituting the value of $f'(re^{i\theta})e^{i\theta}$ from (2) in (3), we obtain

$$\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} = r \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) i \quad \text{or} \quad \frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} = i r \frac{\partial u}{\partial r} - r \frac{\partial v}{\partial r}$$

Equating real and imaginary parts, we get

$$\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r} \qquad \Rightarrow \qquad \frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}$$

And

$$\boxed{\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}}$$

Proved.