Crystal System

Dr. Manish Kumar Verma

Assistant Professor, Department of Physics Magadh Mahila College, Patna University

email: manish.v83@gmail.com

Solid State

Crystalline

Atoms Stacked
in periodic
manner
Repeated
pattern unit in 3
dimensions

Polycrystalline

 Periodicity is interrupted at grain boundaries

Amorphous

•Size of grains comparable to pattern unit

Crystal Structure

An ideal crystal is formed by infinite repetition of an identical group of atoms.

>Three dimensional periodic array of identical building blocks

➢ Basis:-Atoms, group of atoms

>Lattice:- Set of mathematical points to which basis is attached

Crystal structure

Bravais and Non Bravais Lattice

Bravais Lattice

All lattice points are equivalentAll atoms are of the same kind

Non Bravais Lattice

- •Some of the lattice points are nonequivalent
- •Translation from A to A' is not equivalent
- •Lattice with a basis or interpenetrating bravais lattices

Lattice Translation Vectors

- Lattice is invariant under translation
- i.e. lattice as viewed from any lattice point remains invariant, translated by integral multiple of basis vectors **a,b,c**
- **R'**= **R**+ n_1 **a**+ n_2 **b**+ n_3 **c** = **R**+**T**
- Where n₁,n₂,n₃ are arbitrary integers, **T** is known as translation vector

Basis Vectors and Primitive Unit Cells

•Smallest unit which when translated by all lattice vectors covers the lattice once and only once.

Origin

- •The vectors a and b are basis vectors
- •Choice of unit cell is not unique
- •Each unit cell has only one lattice point
- All unit cells have same area
 S=|a×b|

Wigner Seitz Unit Cell

- Weigner Seitz unit cell about a lattice point is the region of space that is closer to that particular point than to any other lattice point.
- •Contains only 1 lattice point per unit cell
- •Has all the properties of Primitive Unit cell.

Construction

- \checkmark Join all lattice points by straight lines
- ✓ Draw normal bisector line/plane to these lines
- ✓ The smallest volume enclosed in this way is the Wigner Seitz primitive cell.
- ✓When translated by all translation vectors complete lattice can be covered by this cell only once.

Non Primitive Unit Cell

•Unit cell with area larger than primitive unit cell•More than 1 lattice point per unit cell

Non-primitive cells and non-Bravais lattices have no connection. Non Primitive Cell refers to the particular (and somewhat arbitrary) choice of basis vectors in a Bravais lattice. Non Bravais Lattice refers to the physical fact of nonequivalent sites.

Lattice types in 2 dimensions

Lattice Type	Conventional unit cell	Axes and angles	Point group symmetry about lattice point
Oblique	Parallelogram	a≠b, ø=0°	2
Square	Square	a=b, ø=90°	4 mm
Hexagonal	60° rhombus	a≠b, ø=120°	6 mm
Primitive rectangular	Rectangle	a≠b, ø=90°	2 mm
Centred rectangular	Rectangle	a≠b, ø=90°	2 mm

Lattices in 2 D

(d) Centred rectangular lattice axes are shown for both the primitive cell and the rectangular unit cell for which $|\mathbf{a}| \neq |\mathbf{b}|, \gamma = 90^{\circ}$

7 crystal Systems, 14 Bravais Lattices in 3D

System	Essential Symmetry	Bravais Lattices	Restrictions on conventional cell angles and axes
Triclinic	No Planes, No Axes	Simple	a≠b≠c α≠β≠Υ
Monoclinic	One 2-fold axis or one plane	Simple Base centred	a≠b≠c α=Ƴ=90°≠β
Orthorhombic	Three mutually perpendicular 2-fold axis or 2 planes intersecting in a 2-fold axis	Simple Body centred Base centred Face centred	a≠b≠c α=β=۲=90°
Tetragonal	One 4-foldaxis or 4-fold inversion axis	Simple Base centred	a=b≠c α=β=Ƴ=90°
Cubic	Four 3-fold axis	Simple Body centred Face centred	a=b=c α=β=۲=90°
Trigonal	One 3-fold axis	Simple	a=b=c α=β=Ƴ<120°,≠90°
Hexagonal	One 6-fold axis	Simple	a=b≠c α=β=90° Ƴ=120°

Triclinic

Monoclinic

Monoclinic base centred

Ortho-rhombic

Ortho-rhombic base centred

Ortho-rhombic body centred

Ortho-rhombic face centred

Cubic

References

- Introduction to Solid State Physics, Charles Kittel
- Elementary Solid State Physics, Principles and Applications, M. A. Omar
- Solid State Physics, A. J. Dekker
- Solid State Physics, M.A. Wahab
- Elements of Solid State Physics, J. P. Srivastava

email: manish.v83@gmail.com