Elementary Transformations and Elementary Matrices

(For B.Sc./B.A. Part-II, Hons. Course of Mathematics)

Poonam Kumari Department of Mathematics, Magadh Mahila College Patna University

Contents

- 1. Elementary Transformations of a Matrix
- 2. Elementary Matrices
- 3. Elementary Transformations and Elementary Matrices

1. Elementary Transformations of a Matrix

Definition : Elementary Transformations of a matrix means some operations performed on rows or columns of the matrix to transform it into a different form so that the calculations become simpler.

Elementary transformations performed on rows of a matrix are known as elementary row transformations and elementary transformations performed on columns of a matrix are known as elementary column transformations.

There are six elementary transformations of a matrix, three due to rows and three due to columns :

- (i) Interchange of any two rows (or columns) of a matrix
- (ii) The multiplication of all the elements of any row (or columns) of a matrix by a non zero number
- (iii) The addition to all the elements of any row (or column) of a matrix, the corresponding elements of any other row (or column) multiplied by some number

Notations for Elementary Transformations

The following notations are used to denote the elementary transformations :

- (i) R_{ij} : It stands for the interchange of the *i*th and *j*th rows of a matrix.
- (ii) $R_i(c)$: It stands for multiplication of the *i*th row of a matrix by a number $c \neq 0$.
- (iii) $R_{ij}(k)$: It stands for addition to the *i*th row of a matrix, the product of the *j*th row by a number k.

The corresponding column transformations are denoted by C in place of R, i.e., by C_{ij} , $C_i(c)$ and

 $C_{ij}(k)$ respectively.

Equivalent Matrices

If a matrix B can be obtained from a matrix A by performing a finite number of elementary row (or column) transformations, then B is said to be equivalent to A and it is written as $B \sim A$.

Note : It can be proved that equivalence of matrices is an equivalence relation.

2. Elementary Matrices

Definition : A matrix obtained from a unit matrix by subjecting it to any of the elementary transformations is called an elementary matrix.

There are four types of elementary matrices :

- (i) E_{ij} : It stands for a matrix obtained from a unit matrix by interchanging its *i*th and *j*th rows (or columns).
- (ii) $E_i(c)$: It stands for a matrix obtained from a unit matrix by multiplying its *i*th row (or column) by a number $c \neq 0$.

(iii) $E_{ij}(k)$: It stands for a matrix obtained from a unit matrix by addition to its *i*th row (or column), the product of its *j*th row (or column) by a number *k*.

(iv) $E'_{ij}(k)$: It stands for the transpose of $E_{ij}(k)$.

Theorem : The elementary matrices are non-singular.

Proof: There are four types of elementary matrices : E_{ij} , $E_i(c)$, $E_{ij}(k)$ and $E'_{ij}(k)$. We have to prove that each of these is non-singular.

E_{ii} is non-singular

We know that if any two rows or columns of a determinant are interchanged, then its value remains the same but the sign is changed. Therefore,

 $|E_{ij}| = -|I|$, where I denotes the unit matrix = -1 $(\because |I| = 1)$ $\neq 0$

This $\Rightarrow E_{ij}$ is non-singular.

$E_i(c)$ is non-singular

We know that if each element of any row or column of a determinant is multiplied by a non-zero number c, then the determinant is multiplied by c. Therefore,

$$|E_i(c)| = c |I|$$

= c.1 (:: |I|=1)
= c
\ne 0
This \Rightarrow E_i(c) is non-singular.

$E_{ii}(k)$ is non-singular

We know that a determinant remains unaltered in value by adding to all the elements of any row or column, a constant multiple of the corresponding elements of any other row or column. Therefore,

$$|E_{ij}(k)| = |I|$$

= 1
 $\neq 0$ (:: |I|=1)

This $\Rightarrow E_{ij}(k)$ is non-singular.

$E'_{ij}(k)$ is non-singular

Since a matrix A and its transpose A' have the same determinant, therefore

$$\begin{vmatrix} E'_{ij}(k) \\ = |E_{ij}(k)| \\ = 1 \qquad (\because |E_{ij}(k)| = 1, \text{ as proved earlier}) \\ \neq 0 \end{vmatrix}$$

This $\Rightarrow E'_{ij}(k)$ is non-singular.

3. Elementary Transformations and Elementary Matrices

Theorem 1.

- (a) Every elementary row transformation on the product AB of two matrices A and B is equivalent to the same elementary row transformation on the pre-factor A of AB.
- (b) Every elementary column transformation on the product AB of two matrices A and B is equivalent to the same elementary column transformation on the post-factor B of AB.

Proof: Let *A* and *B* be two matrices of orders $m \times n$ and $n \times p$ respectively so that the product *AB* is defined.

Let the rows of *A* be denoted by $R_1, R_2, R_3, ..., R_m$ and let the columns of *B* be denoted by $C_1, C_2, C_3, ..., C_p$. Then, we have

$$A = \begin{bmatrix} R_1 \\ R_2 \\ \dots \\ \dots \\ R_m \end{bmatrix} \text{ and } B = \begin{bmatrix} C_1 & C_2 & \dots & C_p \end{bmatrix}.$$

Therefore,

$$AB = \begin{bmatrix} R_1C_1 & R_1C_2 & \dots & R_1C_p \\ R_2C_1 & R_2C_2 & \dots & R_2C_p \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ R_mC_1 & R_mC_2 & \dots & R_mC_p \end{bmatrix}$$

This representation of the matrix AB shows that if the rows $R_1, R_2, R_3, ..., R_m$ of A be subjected to any elementary transformation, then the rows of AB are also subjected to the same elementary transformation. This proves (a).

Similarly, the product AB indicates that if the columns $C_1, C_2, C_3, ..., C_p$. of B be subjected to any elementary transformation, then the columns of AB are also subjected to the same elementary transformation. This proves (b).

Theorem 2.

- (a) Every elementary row transformation of a matrix can be brought about by pre-multiplication with the corresponding elementary matrix.
- (b) Every elementary column transformation of a matrix can be brought about by postmultiplication with the corresponding elementary matrix.

Proof: (a) Let A be any matrix and I, the unit matrix. Then, we can write

A = IA

...(1)

Now, let us apply some elementary row transformation λ on A and let the matrix obtained from A by applying this elementary row transformation λ be denoted by $(A)_{\lambda}$. Then, it follows from equation (1) that

$$(A)_{\lambda} = (IA)_{\lambda}$$

This $\Rightarrow (A)_{\lambda} = (I)_{\lambda} A$

[Since every elementary row transformation on the product AB of two matrices A and B is equivalent to the same elementary row transformation on the pre-factor A of AB.]

 $\Rightarrow (A)_{\lambda} = EA,$

A = AI

where E denotes the elementary matrix corresponding to the elementary row transformation λ . This proves (a).

(b) If A be any matrix and I, the unit matrix, then, we can write

...(2) Now, let us apply some elementary column transformation μ on A and let the matrix obtained from A by applying this elementary column transformation μ be denoted by $(A)_{\mu}$. Then, it follows from equation (2) that

$$(A)_{\mu} = (AI)_{\mu}$$

This $\Rightarrow (A)_{\mu} = A(I)_{\mu}$

[Since every elementary column transformation on the product AB of two matrices A and B is equivalent to the same elementary column transformation on the post-factor B of AB.]

$$\Rightarrow (A)_{\mu} = AE,$$

where E denotes the elementary matrix corresponding to the elementary column transformation μ . This proves (b).

Theorem 3. The inverse of a non-singular matrix can be obtained by elementary transformations.

Proof: Let *A* be a non-singular matrix.

We have to prove that A^{-1} can be obtained by elementary transformations.

Let us apply some elementary row transformations on the matrix A until A is reduced to the unit matrix I. This is equivalent to pre-multiplying the matrix A by the corresponding elementary matrices E_1, E_2, \dots, E_k until A is reduced to the unit matrix I. Therefore, we have

$$(E_1 E_2 \dots E_k)A = I$$

 $(E_1 \ E_2 \dots E_k)A^{-1} = IA^{-1}$ $\Rightarrow (E_1 \ E_2 \dots E_k)I = A^{-1} \qquad \begin{bmatrix} \because AA^{-1} = I & \text{and} & IA^{-1} = A^{-1} \end{bmatrix}$

 \Rightarrow If the matrix A is reduced to the unit matrix I by some elementary row transformations, the unit matrix I is reduced to A^{-1} by same elementary row transformations.

Similarly, if we have to find A^{-1} using elementary column transformations, then we apply some elementary column transformations on the matrix A until A is reduced to the unit matrix I. This is equivalent to post-multiplying the matrix A by the corresponding elementary matrices E_1, E_2, \dots, E_k until A is reduced to I. Therefore, we have

$$A(E_1 E_2 \dots E_k) = I$$

This $\Rightarrow A^{-1}A(E_1 E_2 \dots E_k) = A^{-1}I$

 $\Rightarrow I(E_1 E_2 \dots E_k) = A^{-1} \qquad \left[\because A^{-1}A = I \text{ and } A^{-1}I = A^{-1} \right]$

 \Rightarrow If the matrix A is reduced to the unit matrix I by some elementary column transformations, the unit matrix I is reduced to A^{-1} by same elementary column transformations.

Example : Compute the inverse of the matrix

$$A = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

Solution : A matrix B is the inverse of a matrix A, if

BA = I, where I is the unit matrix of the same order as A.

_

For the given matrix A, we can write

$$A = IA,$$

where I is the unit matrix of order 4.

Now, we apply elementary row transformations on the matrix A on the LHS of equation (1) in order to transform it to the unit matrix I.

From equation (1), we have

$$\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A$$

This $\Rightarrow \begin{bmatrix} 1 & 3 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A$ (Replacing R_1 by $-R_1$)
 $\Rightarrow \begin{bmatrix} 1 & 3 & -3 & 1 \\ 0 & -2 & 2 & -1 \\ 0 & -11 & 8 & -5 \\ 0 & 4 & -3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} A$
(Replacing R_2 by $R_2 - R_1$, R_3 by $R_3 - 2R_1$ and R_4 by $R_4 + R_1$)

$$\Rightarrow \begin{bmatrix} 1 & 3 & -3 & 1 \\ 0 & 1 & -1 & 1/2 \\ 0 & -11 & 8 & -5 \\ 0 & 4 & -3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -1/2 & -1/2 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} A \quad \left(\text{Replacing } R_2 \text{ by } -\frac{1}{2}R_2 \right)$$

...(1)

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & -1 & 1/2 \\ 0 & 0 & -3 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 & 0 & 0 \\ -1/2 & -1/2 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} A$$
(Replacing R_1 by $R_1 - 3R_2$, R_1 by $R_3 + 11R_2$ and R_4 by $R_4 - 4R_2$)
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & -1 & 1/2 \\ 0 & 0 & 1 & -1/6 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 3/2 & 0 & 0 \\ -1/2 & -1/2 & 0 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} A$$
(Replacing R_1 by $-\frac{1}{3}R_3$)
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & -1/6 \\ 0 & 0 & 1 & -1/6 \\ 0 & 0 & 0 & 1/6 \end{bmatrix} = \begin{bmatrix} 1/2 & 3/2 & 0 & 0 \\ 2/3 & 4/3 & -1/3 & 0 \\ 7/6 & 11/6 & -1/3 & 0 \\ -1/6 & 1/6 & 1/3 & 1 \end{bmatrix} A$$
(Replacing R_2 by $R_2 + R_3$ and R_4 by $R_4 - R_3$)
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & -1/2 \\ 0 & 1 & 0 & -1/6 \\ 0 & 0 & 0 & 1/6 \end{bmatrix} = \begin{bmatrix} 1/2 & 3/2 & 0 & 0 \\ 2/3 & 4/3 & -1/3 & 0 \\ -1/6 & 1/6 & 1/3 & 1 \end{bmatrix} A$$
(Replacing R_4 by $6R_4$)
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & -1/6 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6 \end{bmatrix} A$$
(Replacing R_4 by $R_1 + \frac{1}{2}R_4$, R_2 by $R_2 - \frac{1}{3}R_4$ and R_3 by $R_3 + \frac{1}{6}R_4$)
$$\Rightarrow I = \begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6 \end{bmatrix} A$$
where $B = \begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6 \end{bmatrix}$ is the inverse of A .

Exercises

Compute the inverse of the following matrices :

1.	$\left\lceil 0 \right\rceil$	2	1	13	3]	[0	1	2	
	1	1	-1	-2	2.	1	1	2	
	1	2	0	1		2	2	2	
	1	1	2	6		2	3	3	

Answers

	[1	3	-3	1
1.	1	1	-1	0
	8		-16	3
	3	-5	6	-1

