BIOINFORMATICS

Study Material for :

B.Sc. Part III Botany Hons.

Paper V

Dr. Pushpanjali Khare Sr. Asstt. Professor & Head, Deptt. of Botany MMC (PU)

Patna

INTRODUCTION

0

- **<u>BIOINFORMATICS</u>** is the field of science in which biology, computer
- science, statistics applied mathematics and information technology
- merge to form a single discipline
- It is a latest discovery of new biological insight which create a global perspective from which unifying principles in biology can be discerned
- Basically it is a management system of creating and restoring the information of molecular biology in the form of data, codes, graph and structure
- It is a result of <u>HUMAN GENOME PROJECT</u> and creating <u>"GENOMIC REVOLUTION"</u>,

COMPONENTS OF BIOINFORMATICS

- **1.** CREATION OF DATABASES:
- Involves the organizing, storage and management of the biological data sets
- Databases are accessible and submit new entries. Protein sequences data bank for molecular structures
- 2. DEVELOPMENT OF ALGORITHMS AND STATISTICS:
- Involves the development of tools and resources to determine the relationship among the members of large data sets
- Comparison of protein sequence data with the already existing protein sequences
- **3.ANALYSIS OF DATA INTERPRETATION:**
 - Includes DNA, RNA and protein sequences, protein structure, gene expression profiles and biochemical pathways

AREA OF BIOINFORMATICS

BIOINFORMATICS TOOLS

- There are certain sets of programming applications which have been designed and work as tools in the field of bioinformatics. They are:-
 - 1. BLASTS
 - 2. Fast A
 - 3. Emboss
 - Clustal W
 Ras Mol

FORMS IN WHICH BIOLOGICAL DATA IS STORED

SEQUENCE ANALYSIS

- It is the process of subjecting a DNA, RNA or peptide sequence to any of a
- wide range of analytical methods to understand its features, function,
- structure or evolution
- It includes-

0

- Sequencing: Sequence assembly
- Alignment: Searching (in Databases)
- On the basis of number of comparing sequencing strand, it is of two types:
 - Pair wise alignment
 - **Multiple Sequence Alignment**

TYPES OF SEQUENCE ALIGNMENT

Local Alignment

Pairwise Sequence Alignment

Target Sequence

5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3'

Global Alignment

Target Sequence

Query Sequence

Multiple Sequence Alignment (MSA)

STRUCTURAL BIOINFORMATICS

- Prediction of structure from sequence
 - secondary structure
 - homology modelling, threading
 - ab initio 3D prediction
- Analysis of 3D structure
 - structure comparison/ alignment
 - prediction of function from structure
 - molecular mechanics/ molecular dynamics
 - prediction of molecular interactions, docking
- Structure databases (RCSB)

Ref: Biowits

STRUCTURAL BIOINFORMATICS

There are various types of data base designed to study and store different molecular information. The different databases are:

Primary Database

Secondary Database Composite Database

SECONDARY DATABASE

COMPOSITE DATABASE

COMBINES DIFFERENT FORMS OF PRIMARY DATA BASE

APPLICATION OF BIOINFORMATICS

- Sequence mapping of biomolecules (DNA,RNA and proteins)
 - Identification of nucleotide sequences of functional gene
- Finding of sites that can be cut by restriction enzymes
- Prediction of functional gene products
- To trace the evolutionary trees of genes
- For the prediction of 3-dimensional structure of proteins
- Molecular modelling of biomolecules
- Designing of drugs for medical treatment
- Handling of vast biological data which otherwise is not possible
- Development of models for the functioning of various cells, tissues and organs
- Designing bioweapons

•

THANK YOU

Students are requested to share their queries on whatsapp group of class: MMC botany(D2)

OR

OR

• **# 9708063491**

 \mathbf{O}

Ø