Topic: Special Theory of Relativity, Intervals Spacetime and Proper Time

By Dr. Supriya Rani, Guest Faculty, Department of Physics, Magadh Mahila College, PU

Intervals in Spacetime

Let us express mathematically the constancy of c in all frames. An *event* is specified by the time and place where it occurs. Thus, an event is specified by *four* coordinates,(t, x, y, z). The four-dimensional space spanned by these coordinates is called *spacetime*. The *interval* between two events in spacetime at (t_1, x_1, y_1, z_1) and (t_2, x_2, y_2, z_2) is defined

to be

$$s_{12} = \sqrt{c^2 (t_1 - t_2)^2 - (x_1 - x_2)^2 - (y_1 - y_2)^2 - (z_1 - z_2)^2} .$$
(1)

For two events separated by an infinitesimal amount, the interval ds is infinitesimal, with

$$ds^{2} = c^{2} dt^{2} - dx^{2} - dy^{2} - dz^{2} .$$
⁽²⁾

when the two events denote the emission and reception of an electromagnetic signal, we have $ds^2 = 0$. This must be true in any frame, as the fact the invariance of c, hence since ds and ds' are differentials of the same order, we must have $ds'^2 = ds^2$. This last result requires homogeneity and isotropy of space as well. Finally, if infinitesimal intervals are invariant, then integrating we obtain s = s', and we conclude that the interval between two space-time events is the same in all inertial frames.

When $s_{12}^2 > 0$, the interval is said to be *time-like*. For timelike intervals, we can always find a reference frame in which the two events occur at the same *locations*. As an example, let a passenger sitting on a train. Event #1 is the passenger yawning at time t_1 . Event #2 is the passenger yawning again at some later time t_2 . To an observer sitting in the train station, the two events take place at different locations, but in the frame of the passenger, they occur at the same location.

When $s_{12}^2 < 0$, the interval is said to be *space-like*.

Figure : A (1 + 1)-dimensional light cone. The forward light cone consists of timelike events with $\Delta t > 0$. The backward light cone consists of timelike events with $\Delta t < 0$. The causally disconnected regions are time-like, and intervals connecting the origin to any point on the light cone itself are light-like.

moment, in the frame of the reader, the North and South poles of the earth are separated by a space-like interval. If the interval between two events is space-like, a reference frame can always be found in which the events are simultaneous.

An interval with $s_{12} = 0$ is said to be *light-like*.

This leads to the concept of the *light cone*, shown in figure. Let an event E. In the frame of an inertial observer, all events with $s^2 > 0$ and $\Delta t > 0$ are in E's forward light cone and are part of his absolute future. Events with $s^2 > 0$ and $\Delta t < 0$ lie in E's backward light cone are are part of his absolute past. Events with spacelike separations $s^2 < 0$ are causally disconnected from E. Two events which are causally disconnected can not possible influence each other. Uniform rectilinear motion is represented by a line t = x/v with constant slope. If v < c, this line is contained within E's light cone. E is potentially influenced by all events in its backward light cone, *i.e.* its absolute past. It is impossible to find a frame of reference which will transform past into future, or spacelike into timelike intervals.

Proper time

Proper time is the time read on a clock traveling with a moving observer. Let two observers, one at rest and one in motion. If dt is the differential time elapsed in the rest frame, then

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$$
(3)

$$=c^2 dt'^2 , \qquad (4)$$

where dt' is the differential time elapsed on the moving clock. Thus,

$$dt' = dt \sqrt{1 - \frac{\boldsymbol{v}^2}{c^2}} , \qquad (5)$$

and the time elapsed on the moving observer's clock is

$$t_2' - t_1' = \int_{t_1}^{t_2} dt \sqrt{1 - \frac{\boldsymbol{v}^2(t)}{c^2}} \,. \tag{6}$$

Thus, *moving clocks run slower*. This is an essential feature which helps in understanding many important aspects of particle physics. A particle with a brief lifetime can, by moving at speeds close to *c*, appear to an observer in our frame to be long-lived. It is customary to define two dimensionless measures of a particle's velocity:

$$\beta \equiv \frac{\boldsymbol{v}}{c} \quad , \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$$
 (7)

As $v \to c$, we have $\beta \to 1$ and $\gamma \to \infty$.

Suppose we wish to compare the elapsed time on two clocks. We keep one clock at rest in an inertial frame, while the other executes a closed path in space, returning to its initial location after some interval of time. When the clocks are compared, the moving clock will show a smaller elapsed time. This is stated as the "twin paradox." The total elapsed time on a moving clock is given by

$$\tau = \frac{1}{c} \int_{a}^{b} ds , \qquad (8)$$

where the integral is taken over the world line of the moving clock.