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                                Introduction to Group theory 

Defination1.1: A non empty set G is said to be group if in G there defined a operation ‘*’ such 

that:  

(1) For all a, b in G, the result of the operation, a * b, is also in G.     [Closure law] 

(2) For all a, b and c in G, then (a * b) * c = a * (b * c).                     [Associative Law] 

(3)There exists an element e in G such that, for every element a in G, the 

equation e * a = a * e = a holds.                                                   [Existence of Identity element] 

(4) For each a in G, there exists an element b in G, commonly denoted a
−1

 (or −a, if the 

operation is denoted "+"), such that a *b = b * a = e, where e is the identity element. Here b is 

called inverse of  a and  denoted as  a
−1

=b.                                   [Existence of Inverse element] 

Remarks: (i) A group <G,*> is called Abelian group or Commutative if it satisfy the condition 

a*b=b*a   for all element in G. 

(ii) Generally, the binary composition is denoted by ’.’(dot). This binary composition ’.’ is also 

called product or multiplication (although it may have nothing to do with the usual 

multiplication). 

(iii) If the set G is finite element, then <G,*>  is called finite group other wise, it is called infinite 

group. 

(iv) The closure property need not to be state separately if we used ‘non empty set G  together 

with binary operation’ instead of only ‘operation’. 

(v) Since ��� ∗ � = � = � ∗ ���, which means (���)�� = �. 

Defination1.2: If in a group  <G,*>  the underlying  set G consists of finite numbers of distinct 

element, then the group is called a finite group otherwise infinite group. 

      The number of distinct element in the group is defined as order of the group. It is denoted by 

o(G) or |G|.  

Eample.1 Show that the set of all integers …-4, -3, -2, -1, 0, 1, 2, 3, 4, … is an infinite Abelian 

group with respect to the operation of addition of integers. 

Solution: Let us test all the group axioms for an Abelian group. 

(1) Closure Axiom: We know that the sum of any two integers is also an integer, i.e., for 

all a,b∈Z,   a+b∈ Z. Thus Z is closed with respect to addition. 



(2) Associative Axiom: Since the addition of integers is associative, the associative axiom is 

satisfied, i.e., for a,b,c∈Z   such that a+(b+c)=(a+b)+c 

(3) Existence of Identity: We know that 0 is the additive identity and 0∈Z, 

i.e., 0+a=a=0+a ∀a∈Z  

Hence, additive identity exists. 

(4) Existence of Inverse: If a∈Z  then –a∈Z. Also, (–a)+a=0=a+(–a) 

Thus, every integer possesses additive inverse. Therefore Z  is a group with respect to addition. 

Since the addition of integers is a commutative operation, therefore a+b=b+a ∀a,b∈Z 

Hence (Z,+) is an Abelian group. Also, Z contains an infinite number of elements. 

Therefore (Z,+)  is an Abelian group of infinite order. 

Example 2: The set integer I, w.r.t. multiplication does not form group, although it satisfy the 

condition of  closure, associativity and identity conditions. 

Example 3: The set of natural number N, does not form group w.r.t  addition as it does not 

possesses identity and inverse of element. although it satisfy the conditions of closure and  

associativity. 

Example 4: Show that set of rational number Q-{0} form group w.r.t. operation usual 

multiplication. 

Solution: Let the given set be denoted by Qo. Then by group axioms, we have 

(1) We know that the product of two non-zero rational numbers is also a non-zero rational 

number. Therefore Qo  is closed with respect to multiplication. Hence, the closure axiom is 

satisfied. 

(2) We know for rational numbers: 

(a⋅b)⋅c=a⋅(b⋅c)  for all a,b,c∈Qo. Hence, the associative axiom is satisfied. 

(3) Since 1 the multiplicative identity is a rational number, hence the identity axiom is satisfied. 

(4) If a∈Qo,  then obviously, 1/a ∈Qo. Also (1/a)⋅a=1=a⋅(1/a) 

so that 1/a is the multiplicative inverse of a. Thus the inverse axiom is also satisfied. Hence Qo 

 is a group with respect to multiplication. 

Example 5: Show that C, the set of all non-zero complex numbers is a multiplicative group. 

 Solution: Let C={z:z=x+iy, x,y ∈ R}. Here R is the set of all real numbers and i= √–1. 



(1) Closure Axiom: If a+ib ∈ C  and c+id ∈ C, then by the definition of multiplication of 

complex numbers 

            (a+ib)(c+id)=(ac–bd)+i(ad+bc) ∈ C 

Since ac–bd, ad+bc ∈ R for a,b,c,d ∈ R. Therefore,C is closed under multiplication. 

(2) Associative Axiom: 

(a+ib){(c+id)(e+if)}=(ace–adf–bcf–bde)+i(acf+ade+bce–bdf)    

                                                                  ={(a+ib)(c+id)}(e+if) for a,b,c,d ∈ R. 

(3) Identity Axiom: e=1(=1+i0) is the identity in C. 

(4) Inverse Axiom: Let (a+ib)(≠0)∈C, then 

(a+ib)
-1

=1/(a+ib)=a–ib/(a
2
+b

2
)  

(a+ib)
-1

=a/(a
2
+b

2
)+i(b/( a

2
+b

2
)  

                                                               =m+in ∈ C 

 where m= a/(a
2
+b

2
) and n= b/(a

2
+b

2
). Hence C is a multiplicative group. 

Example 6: Let the set G={ , , , } . Define  product on G by usual multiplication 

together with  i
2
=j

2
=k

2
=-1, ij=-ji=k, jk=-kj=i,ki=-ik=j. This define a non-Abelian  group of order 

8. It is denoted by Q8, called Quaternion Group. 

Defination 1.3: Addition (Multiplication) Modulo 

Now here we are going to discuss a new type of addition(multiplication), which is known as 

“addition(multiplication) modulo m” and written in the form a +m b(a×m b) where a and b belong 

to an integer and m is any fixed positive integer. By definition we have 

a +m b=r, for 0⩽r<m  (a ×m b=r), 

Here r is the least non-negative remainder when a+b (a.b), i.e., the ordinary addition 

(multiplication) of a and b is divided by m. 

For example, 5+6 3=2, since 5+3=8=1(6)+2, i.e., it is the least non-negative reminder when 5+3 

is divisible by 6 and 5×6 3=3, since 5×3=15=2(6)+3 

Thus to find a+m b(a×m b), we add(multiply) a and b in the ordinary way and then from the 

sum(multiplication), we remove integral multiples of m in such a way that the remainder r is 

either 0 or a positive integer less than m. 

Ex:  Let G={0,1,2,3,4,5) be a set. Show that under addition modulo 6 G form agroup 

 

 



+6 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

1. From table it is clear that G is closed under closure property as resulting element again 

element of set G. 

2. Clearly associative law hold in G 

3. From second  row and second column it is clear that 0 is the identity element of the 

group. 

4. From table it is clear that inverse of every element of G exist in G. That is  1
-1

=5,  2
-1

=4, i 

3
-1

=3,4
-1

 =2, 5
-1

 =1. 

5. Since all the elements are symmetrical about principle diagonal, G is abelian. 

Hence G is abelian group . 

Ex:  Let G={1,2,3,4,5,6} be a set. Show that under multiplication modulo 7 G form a group. 

 

×7 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 

3 3 6 2 5 1 4 

4 4 1 5 2 6 3 

5 5 3 1 6 4 2 

6 6 5 4 3 2 1 

1. From table it is clear that G is closed under closure property as resulting element again 

element of set G. 

2. Clearly associative law hold in G 

3. From second  row and second column it is clear that 1 is the identity element of the 

group. 

4. From table it is clear that inverse of every element of G exist in G. Since all the elements 

are symmetrical about principle diagonal, G is abelian. 

Hence G is abelian group . 

Example 8: Prove that the set G of all nth roots of unity, where n is fixed positive integer form 

an abelian group under usual multiplication of complex numbers. 





 


