

Homogenous Catalysis

Dr. Bina Rani Department of Chemistry Magadh Mahila College Patna University Mob:9431808891

Outline

- Background to Catalysis
- Basic Principles of Homogeneous Catalysis
- Selected Examples

energy of a reaction

 $A \xrightarrow{k_1} A^* \xrightarrow{k_2} B$

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

How Does a Catalyst Work?

- Lowering activation energy
- •Stabilization of a reactive transition state
- Bringing reactants together
 proximity effect
 orientation effect
- Enabling otherwise inaccessible reaction paths

Advantages of Catalytic Process

Methyl Methacrylate (for Perspex)

Old process: 2.5 kg waste / kg product

Different types of Catalyts

Heterogeneous

- Usually a solid in a different phase from the reactants
- Usually metal or metal oxide

Homogeneous

- In the same phase as the reactants
- Usually a dissolved metal complex

Enzyme (Biological)

- Usually a complex system in water
- Highly active and selective
- Sometimes rather unstable
- Becoming increasingly popular

World Catalyts market \$ 9 billion

Heterogeneous vs Homogeneous Catalysis

Heterogeneous	Homogeneous
Solid metal or metal oxide	Metal complex
Solvent not required	Solvent required (usually)
Thermally robust	Thermally sensitive
Only surface atoms available	All metal centres available
Selectivity can be poor	Selectivity can be tuned
Difficult to study while operating	In situ spectroscopy
Easy separation from products	Difficult product separation
Some processes only heterogeneous	Some processes only homogeneous
$N_2 + 3 H_2 \rightarrow 2 NH_3$	MeOH + CO \longrightarrow MeCO ₂ H
Exhaust catalyst	Hydroformylation of alkenes

Counting electrons

- Determine the oxidation state of the metal and hence the number of d electrons.
- Add 2 for each ligand (note that benzene coordinates through the 3 double bonds so gives 6).
- Add electrons for overall negative charges, subtract electrons for overall positive charges.

6 e

12 e

18 e

Reactions in catalytic cycles

Coordination

• Need a vacant site (often 14 or 16 e intermediate)

Rnº 40°	6 e
5 2e ligands	10 e
Total	16 e

18 e

Bonding of alkenes

- •Donation of electron density from π orbital on C=C to an empty s, p or d orbital on the metal
- •Back donation of electron density from the filled t_{2g} level on the metal to the empty π^* orbital on C=C

Adds 2 e

Bonding of CO

•Donation of a lone pair of electrons from the C atom of CO to an empty s, p or d orbital on the metal

•Back donation of electron density from the filled t_{2g} level to the empty π^* orbital on CO

Adds 2 e

Octahedral complexes

Mechanism

$$[ML_6]^{n+}$$
 + L' \rightarrow $[ML_5L']^{n+}$ + L

$$\begin{split} [\mathsf{ML}_6]^{\mathsf{n}+} &+ \mathsf{L}' \to [\mathsf{ML}_6\mathsf{L}']^{\mathsf{n}+} \to [\mathsf{ML}_5\mathsf{L}']^{\mathsf{n}+} + \mathsf{L} \\ & \text{7 coordinate} \end{split}$$

1st order in L'

 ΔS^{\ddagger} negative

3) Hybrid mechanisms

No change in e count

Oxidative Addition

Concerted addition

Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J., *J. Am. Chem. Soc.*, 1984, 106, 451

Alkyl halides – $S_n 2$

Should give inversion of configuration

If both pathways have similar energy partial racemisation will occur

J. K. Stille and K. S. Y. Lau, Acc. Chem. Res. 1977, 10, 434

σ -bond metathesis

Occurs when metal is in highest oxidation state (d⁰) and oxidative addition is not possible

No change in e count

Migratory insertion

- Incoming ligand does not insert •
- Incoming ligand ends up *cis* to the acyl ٠
- Me and CO involved in migration are mutually cis ٠

ĊΟ

Mo

Ο

Ме

CO

Which moves?

Hydride migration and β -hydrogen abstraction

K. Tani, T. Yamagata, S. Akutagawa, H. Kumobayashi, T. Taketomi, H. Takaya. A. Miyashita, R. Noyori and S. Otsuka, *J. Am. Chem. Soc.*, 1984, **106**, 5208

Attack on Coordinated ligands

E. O. Fischer and co-workers

No change in e count

The Wacker Process

1970's 2 M tonnes per year - decreasing

Mechanism

Unit steps in Catalytic reactions

			Change in No		
Introduction of substrates onto metal centre			of electrons		
-	Simple Coordination		+2		
-	Substitution		0		
-	Oxidative Addition		+2		
-	Sigma bond metathesis		0		
Reactions between substrates in coordination sphere.					
-	Migratory insertion		-2		
- Attack of Nucleophiles onto coordinated ligands		0			
-	β -H abstraction		+2		
Releasing substrates from Metal Centre.					
-	Decoordination		-2		
-	Substitution	Reverse of introduction 0			
-	Reductive Elimination		-2		
-	Sigma bond metathesis		0		

16/18 e Rule

• Catalytic cycles often proceed through a variety of intermediates alternating between 16 and 18 electrons

Catalytic hydrogenation (Wilkinson's catalyst)

By ³¹P and ¹H NMR spectroscopy see only compound 2, a resting state outside the catalytic cycle – no information about cycle

Kinetics suggest H migration onto alkene is rate determining

Parahydrogen allows detection of II

Duckett et al, J. Am. Chem. Soc, 1994, **116**, 10548

Asymmetric hydrogenation

W. S. Knowles Nobel Prize, 2001

W.S. Knowles and M.J. Sabacky, Chem. Commun., 1968, 481

Ketone hydrogenation

Rhodium based catalysts are usually of very low activity unless very electron rich (e. g. [RhH(CO)(PEt₃)₃] for aldehyde hydrogenation, J. K. MacDougall et al, *J. Chem Soc. Dalton Trans.*, 1996, 1161)

Ruthenium based catalysts are preferred

Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo and Enantioselective Synthesis of Ketones

> R. Noyori Nobel Prize, 2001

R. Noyori and T. Ohkuma Angew. Chem. Int. Edi. 2001, 40, 40-73.

Hydrogenation of activated ketones

R. Noyori and T. Ohkuma Angew.. Chem. Int. Edi. 2001, 40, 40-

Ligands for asymmetric ketone hydrogenation

R. Noyori and T. Ohkuma Angew. Chem. Int. Edi. 2001, 40, 40-73.

Outer sphere mechanism

P.A. Dub and J. C. Gordon, Dalton Trans., 2016,45, 6756

Heck Coupling Mechanism

Blackmond and coworkers, *Angew Chem. Int. Ed.* 2005, **44**, 4302; *J. Am. Chem. Soc.* 2001 **123** 1848

Cross-Metathesis

metathesis: from Greek
meta, change; tithenai, place

Thank you