(Paper-VIII)
 B.A. Part- III Symbolic Logic
 "Argument Form and Truth Table"

Ranjana Yadav Assistant Professor
Department of Philosophy Magadh Mahila College Patna University Patna, Bihar

Symbolize the following:-
a. Conjunction (.) : Roses are red and violets are blue.

Roses are red (p) p.q
violets are blue(q) and (.)
b. Negation (~) : Lead is not heavier than gold.
~ L
c. Disjunction (v) : Tea or coffee.

Tea (p)
p vq
Coffee(q)
$\operatorname{Or}(\mathrm{v})$

NUMERICAL QUESTIONS:

1. Rossy and belly is not both be selected.

$$
\begin{gathered}
\text { Rossy -p, belly-q, and-(.), not }(\sim) \\
\sim(p . q)
\end{gathered}
$$

2. The words of his mouth were smoother than butter, but war was in his heart.
The words of his mouth were smoother than butter-(p)
war was in his heart(q)

$$
\mathrm{p} \cdot \mathrm{q}
$$

1. Either Atlanta wins their conference championship and Baltimore wins their conference championship or chicago wins the superbowl.

Atlanta wins their conference championship- (p) Baltimore wins their conference championship-(q)
Chicago wins the superbowl-(r)

$$
(\mathrm{p} \cdot \mathrm{q}) \mathrm{v} \mathrm{r}
$$

4. If Alice is elected class president, then either Betty is elected vice- president or Carol is elected treasurer. Betty is elected vicepresident. Therefore, if Alice is elected class- president, then Carol is not elected treasurer.
Implication - 3 means if, then
Alice is elected class president (p), Betty is elected vicepresident (q) , Carol is elected treasurer (r)
$\mathrm{p} \supset(\mathrm{q} \vee \mathrm{r})$
q
.. $\mathrm{p} 于^{\sim} \mathrm{r}$

Truth Table : ~p-Negation of p pvq-Disjunction p.q-Conjunction p $3 \mathbf{q}$ - Implication

\mathbf{p}	\mathbf{q}	$\mathcal{\sim}$	$\mathcal{\sim} \mathbf{q}$	$\mathbf{p} \cdot \mathbf{q}$	$\mathbf{p} \mathbf{v} \mathbf{q}$	$\mathbf{p} \mathbf{~} \mathbf{q}$
T	T	F	F	T	T	T
T	F	F	T	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

Use truth tables to determine the validity or invalidity of the following argument forms:

1. p.q

* p

\mathbf{p}	\mathbf{q}	$\mathbf{p . q}$	\mathbf{p}
T	T	T	T

Ans. - Valid

T	F	F	T
F	T	F	F
F	F	F	F

2. p

* q Э p

\mathbf{p}	\mathbf{q}	\mathbf{p}	\mathbf{q} ว $\mathbf{~}$
T	T	T	T
T	F	T	T
F	T	F	F
F	F	F	T

3. p Э (q Эr)
p 3 q

* q 〕r

Ans. Invalid
Shown by $6^{\text {th }}$ row

p	q	r	p (q つr r	p $\supset \mathbf{q}$	qJ r
T	T	T	T	T	T
T	T	F	F	T	F
T	F	T	T	F	T
T	F	F	T	F	T
F	T	T	T	T	T
F	T	F	T	T	F
F	F	T	T	T	T
F	F	F	T	T	T

Statement Forms: we define it any sequence of symbols containing statement variables, such that when statements are substituted for the statement variables- the same statement being substituted for every occurrence of the same statement variable throughout - the result is a statement.

For example, A, B, and C are different simple statements, the compound statement A ($\mathrm{B} \vee \mathrm{C}$) is a substitution instance of the statement form $\mathrm{p} . \mathrm{q}$, and also of the statement form p . (v r $)$, but only the latter is the specific form of the given statement.

Tautology: A statement form that has only true substitution instance is said to be tautologous, or a tautology

The truth table of tautology -

p	$\sim p$	$p v^{\sim} p$
T	F	T
F	T	T

Contradiction: A statement form that has only false substitution instances is said to be contradiction.

p	$\sim p$	$p \sim p$
T	F	F
F	T	F

Contingent : A statement form that has both true and false substitution instances is said to be contingent.

\mathbf{p}	\mathbf{q}	$\mathbf{p} \cdot \mathbf{q}$
T	T	T
T	F	F
F	T	F
F	F	F

\mathbf{p}	\mathbf{q}	$\mathbf{p} \equiv \mathbf{q}$
T	T	T
T	F	F
F	T	F
F	F	F

Materially Equivalent: Two statements are said to be materially equivalent when they have the same truth value, and we symbolize it by inserting the symbol ' \equiv ' between them. symbol ' \equiv ' may be read 'if and only if' and also called a biconditional.

Logically Equivalent: Two statements are said to be logically

 equivalent when the biconditional express the material equivalence is a tautology. ($\mathrm{p} \equiv^{\sim} \mathrm{p}$)| \mathbf{p} | $\sim^{\sim} \mathbf{p}$ | $\mathbf{p} \equiv{ }^{\sim}{ }^{\sim} \mathbf{p}$ |
| :---: | :---: | :---: |
| T | T | T |
| F | F | T |

Exercises:

1. Use truth tables to characterize the following statement forms as tautologous, contradictory, or contingent:

$$
\begin{aligned}
& (p \cdot q) \supset^{\sim} p \\
& (p \supset P) \supset(q \cdot p) \\
& p \text { Э } q \text { Э }\left[(q \vee r) \partial^{\sim}(r \cdot p)\right] \\
& (p \cdot q) \supset q
\end{aligned}
$$

2. Use truth tables to decide which of the following are logical equivalences:
3. $(\mathrm{p}$ Ј q$) \equiv\left(\sim \mathrm{p} \mathrm{J}^{\sim} \mathrm{q}\right)$

$$
\text { 2. }[\mathrm{p} \vee(\mathrm{q} \cdot \mathrm{r})] \equiv(\sim \mathrm{q} \supset \sim \mathrm{p})
$$

4. ~ (p 〕 q $) \equiv\left[(\mathrm{q} . \mathrm{r}) \mathrm{J}^{\sim}(\mathrm{r} . \mathrm{v} \mathrm{p})\right]$
3.Use truth tables to determine the validity and invalidity of each of the following argument forms:

1. $\mathrm{p} \vee \mathrm{q}$
p
2. $\mathrm{p} \stackrel{\mathrm{q}}{\mathrm{p}} \mathrm{q}$
p vq

* \mathbf{q}

Reference:

Copi ,Irving M., "Symbolic Logic", 5 ${ }^{\text {th }}$ ed. (New Delhi: Pearson India Education Services Pvt. Ltd, 2015), 20-31.

Basson, A. H. and O'Connor, D. J., " Introduction to Symbolic Logic"(New Delhi: Oxford University Press, 1956), 143-148.

THANK YOU

